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Here, we present a novel mechano-spectroscopic atomic force microscopy (AFM-MS) technique that
overcomes the limitations of current spectroscopic methods by combining the high-resolution imaging
capabilities of AFMwith machine learning (ML) classification. AFM-MS employs AFM operating in sub-
resonance tapping imaging mode, which enables the collection of multiple physical and mechanical
property maps of a sample with sub-nanometer lateral resolution in a highly repeatable manner. By
comparing these properties to a database of known materials, the technique identifies the location of
constituent materials at each image pixel with the assistance of ML algorithms. We demonstrate AFM-
MS on various material mixtures, achieving an unprecedented lateral spectroscopic resolution of
1.6 nm. This powerful approach opens new avenues for nanoscale material study, including the
material identification and correlation of nanostructure with macroscopic material properties. The
ability to map material composition with such high resolution will significantly advance the
understanding and design of complex, nanostructured materials.

Keywords: NanoSpectroscopy; Material Identification; Composite Materials; Machine Learning; Atomic force micro-

scopy (AFM); Polymer composites
Introduction
Identifying material composition at the nanoscale remains a crit-
ical challenge in materials science. Accurate recognition of
nanostructures is essential for the development of new
nanocomposite materials, for uncovering structure–property
relationships [1–5]. This understanding is instrumental in the
innovation of new composite materials, especially nanocompos-
ites, which are integral to advancements in technology and
industry [6–10]. Broad utilization of polymeric materials brings
another challenge to understanding microplastic contamination
[11,12]. The spectroscopy capable of identifying the types of
plastics down to the nanoscale, i.e., at the very early stages, will
be important in this area as well [13–16].
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Traditional spectroscopic techniques such as infrared (IR)
spectroscopy [17,18], Raman spectroscopy [19], X-ray photoelec-
tron spectroscopy (XPS) [20], and micro nuclear magnetic reso-
nance (micro-NMR) spectroscopy [21] have been the
cornerstone for material identification by exploiting unique
material properties. However, these methods encounter resolu-
tion limitations that preclude material identification at the
nanoscale. Optical spectroscopic methods are convenient but
are inherently limited by the diffraction limit, while XPS offers
exceptional height resolution but lacks lateral resolution.

Recent advancements in spectroscopic methods have begun
to bridge the gap to nanoscale resolution. Infrared absorbance
spectroscopy, when coupled with atomic force microscopy
(AFM-IR), achieves high resolution, albeit on thin films due to
its reliance on heating a multi-micron sample area with IR light,
while a sharp AFM probe detects the thermal expansion of the
aining, and similar technologies. https://doi.org/10.1016/j.mattod.2024.08.021
1

0.1016/j.mattod.2024.08.021

mailto:igor.�sokolov@tufts.edu
https://doi.org/10.1016/j.mattod.2024.08.021
https://doi.org/10.1016/j.mattod.2024.08.021


R
ESEA

R
C
H
:O

rig
in
al

R
esearch

RESEARCH (LIGHT BLUE) Materials Today d Volume xxx, Number xx d xxxx 2024
sample [22–25]. AFM-IR is also constrained to ambient condi-
tions and is unsuitable for aqueous environments. Although
there were studies in which a thin film of polymer samples was
exposed to aqueous environments on the side of the AFM probe,
while IR heating was applied from the other side that was
attached to the glass, this sophisticated approach did not garner
significant interest from the research community. Furthermore,
the relatively slow operation of AFM-IR limits material identifica-
tion to specific locations rather than enabling comprehensive
spectroscopic imaging. Finally, resolving interfaces between
polymers with differing thermal expansion coefficients—a criti-
cal aspect in nanocomposite studies—remains a significant chal-
lenge when using AFM-IR because the interface is moving
laterally at the moment of heating due to the different heat
expansions of the materials at the interface. Tip-enhanced
Raman spectroscopy (TERS) has also emerged as a high-
resolution spectroscopic method [26–29], yet its application has
been largely confined to isolated structures, such as carbon nan-
otubes or single DNA molecules, due to its complex setup and
limited substrate versatility [30]. And, both AFM-IR and TERS suf-
fer from the risk of changing samples due to excessive laser
radiation.

Here, we introduce an innovative AFM mechano-
spectroscopic imaging technique (AFM-MS) that uses AFM oper-
ating in a sub-resonance tapping [31–33], specifically PeakForce
QNM version [33–35] with the extension Ringing mode (RM)
[32,36–39]. RM yields multidimensional data of the mechanical
and physical characteristics of a sample surface with unparalleled
resolution down to the single nanometer scale. This mode cap-
tures a spectrum of mechanical and physical properties, such as
the dimensions of material necks formed by the AFM probe dur-
ing disconnection, the length of molecules pooled from the sur-
face by the AFM probe, the energy dissipated upon the probe
detachment, etc. Each RM and PeakForce QNM channel serves
as a distinct map, delineating the distribution of specific physical
properties across the sample surface. All RM channels can be
recorded simultaneously on top of several channels of PeakForce
QNM mode. This provides a comprehensive profile of the phys-
ical and mechanical properties of the surface recorded at each
image pixel. In our study, we demonstrate the use of twelve dif-
ferent surface properties, see the Experimental section for detail.

AFM was first proposed as a spectroscopic technique for dis-
tinguishing different materials back in 1994 by measuring the
van der Waals component of the force curve [40]. However, the
limited number of distinguishable materials [41] and the chal-
lenges associated with measuring small van der Waals forces hin-
dered the widespread adoption of this approach. Subsequently,
piezoelectric force microscopy (PFM) was employed to differenti-
ate between various bacterial species [42,43]. Nevertheless, this
method is limited to materials exhibiting piezoelectric proper-
ties, which are relatively uncommon, particularly in polymers.
In contrast to these earlier techniques, the AFM-MS technique
described herein can be applied to a wide range of materials that
undergo deformation and exhibit adhesion under an AFM probe
without requiring additional stimuli such as electrical voltage or
infrared heating of the sample. In this study, we demonstrate the
effectiveness of this technique through the identification of bin-
ary and ternary material blends. We also present a comparative
2
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analysis with confocal Raman microscopy to highlight the
strengths and potential limitations of the AFM-MS approach.
Results and discussion
Nano mechano-spectroscopy (AFM-MS) approach
We demonstrate the method using a complex blend of three
polymers. Fig. 1 shows a schematic of the suggested spec-
troscopy. Images (maps) of different physical/mechanical proper-
ties of known polymers (Fig. 1a) are used to train an ML
algorithm, which is then used to identify polymers in the com-
posite sample. Since the data size of these images can be quite
large (every single pixel of the image is a data point), there are
no restrictions related to the small data size problem, which is
typical for the ML processing of AFM images [44]. Both regular
and deep-learning ML methods can be used. Further, we will
use supervised classification methods. Note that unsupervised
methods, like principal component analysis (PCA), can be used
for some particular cases. However, it is not working well in gen-
eral, including the example of three polymers shown here (SI
Figure S1).

Two approaches are proposed for working with the data,
which differ in the databases used for training the ML algorithm
(Fig. 1b). In Method I, the training is done using AFM images of
pure polymers, while in Method II, the training is done using
information from known locations of known polymers within
the composite samples of the study. Both methods are used in
all material spectroscopies. Method I is more generic and allows
building a broad database of nanomechanical properties of poly-
mers. Such a database will allow the identification of specific
polymers within a sample that contains unknown polymers.
Although Method II seems less generic, it has multiple advan-
tages, which will be discussed later. The machine learning part
is similar for both approaches. The trained ML algorithm is
applied then to each pixel of an unknown sample (Method I)
or unknown parts of the sample (Method II). Depending on
the type of classifier, we can identify either the polymers or the
probability of belonging to the particular polymer at each image
pixel. The neural networks and decision trees used here pre-
sented probabilities for each of the three polymers, which were
encoded by RGB colors in Fig. 1b.

Comparing the results of both methods, one can see very sim-
ilar results. Nevertheless, there are some differences in the com-
plex blend of PEO and PVP polymers (blue and green). This is
attributed to the different times the mix and pure polymer
(needed for Method I) samples were stored after preparation. It
demonstrates the limitation of Method I, the need for strict con-
trol of the sample preparation, including environmental factors
when creating the database of materials for training. Both PEO
and PVP are sufficiently hydrophilic and, therefore, for example,
sensitive to environmental humidity. Method II, on the other
hand, is more robust, as all parts of the sample were prepared
simultaneously under the same conditions, and images were col-
lected in the same environment during scanning.

Table 1 describes a more detailed comparison of these two
methods. For example, the imaging environmental conditions
and sample preparation must be precisely the same as those used
to collect the external database of polymers. This is because the
0.1016/j.mattod.2024.08.021
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FIG. 1

A schematic of the nano mechano-spectroscopy. (a) Physical and mechanical properties of the samples are imaged simultaneously using 12 different imaging
channels (see SI Figure S2 for detail). An example of a 5x5 mm2 blend of three different polymers, polystyrene (PS), polyethylene oxide (PEO), and polyvinyl
pyrrolidone (PVP) is presented. (b) Two methods of material recognition are shown. Method I: The training of the machine learning algorithm is done using
the AFM images of the corresponding pure polymers prepared in the same conditions. Method II: The training of the machine learning algorithm is done
using the areas of known polymers within the sample of study (shown on the image with rectangles of different colors). Note that the AFM data can be used
directly for the training of ML algorithms without any preprocessing. An example of the application of both methods to the blend of three different polymers
is shown. Three different colors were used to identify particular polymers: PS is red, PVP is green, and PEO is blue. Two machine learning algorithms, (shallow)
Neural Networks and Random Forest, were used here and showed identical results.
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physical and mechanical characteristics of polymers can change
substantially when those parameters are not kept the same. For
example, the mechanical properties of polymers can strongly
depend on temperature. Hydrophilic polymers are sensitive to
Please cite this article in press as: M. Petrov et al., Materials Today (2024), https://doi.org/1
humidity, etc. The AFM imaging can result in different values
of the recorded sample properties. For example, the map of adhe-
sion between the AFM probe and sample depends upon the
adhesion energy but also on the viscosity of the polymer and,
3
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TABLE 1

Comparison of two approaches for identification of components in a sample. Method I uses an existent database of nanomechanical properties of pure
components (polymers). Method II uses the data collected on the part of known locations of particular pure components (polymers) within the AFM
image of the study.

Requirement Method I Method II

Knowledge of individual (polymeric) components of the sample Not required (optional) Required
The external database of components (polymers) Required Not

required
AFM imaging under a controlled environment Frequently required Not

required
AFM imaging is restricted to the same imaging conditions

as used in the external material (polymer) database
Required Not

required
Sample preparation is limited to the one used for the external material database Required Not

required
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therefore, on the time of the probe-sample contact, i.e., the speed
of tapping [45]. Finally, the roughness of the sample surface cre-
ated by different sample preparation methods can result in sub-
stantially different values of the recorded sample properties. For
example, high roughness will result in lower stiffness of the
material at small indentation depths [46].

The advantages and limitations of both methods are not
unique to the described mechano-spectroscopy. For example,
databases of materials exist in Raman spectroscopy [47]. When
dealing with a blend of different polymer phases, in particular,
at a small scale (Raman microscopy), the existing database can
usually be used reliably only for a qualitative evaluation of the
material types. A possible discrepancy with the pre-existing
Raman database of polymers is also caused by environmental fac-
tors (temperature, humidity) and sample preparation (different
material processing, residual solvents, etc.). Therefore, Method
II is rather frequently used in Raman microscopy. Another exam-
ple of Method II is described in ref. [20], in which bacterial cells
were studied. Biological cells are susceptible to the environment.
Therefore, it seems to be impractical to implement Method I
when studying such an environment-dependent object.

Fig. 2 demonstrates the details of the work of the trained ML
algorithms for material recognition. Two samples comprising the
same three polymers (PEO, PVP, PS) were prepared: a freshly pre-
pared blend of the polymers and the same sample aged for two
weeks after preparation. When applied to each pixel of the
image, the algorithm calculates the probability that the pixel
belongs to each particular type of material/polymer. The left part
of the image demonstrates the maps of the distribution of these
three probabilities separately for each of the three polymers. The
rightmost images of Fig. 2 show an RGB combination of all three
probabilities, in which red, green, and blue channels correspond
to each of the three polymers, respectively. One can see that the
freshly prepared sample demonstrates a clear separation between
the three polymers. The same sample after two weeks shows a
clear inter-diffusion of polymers. This is expected because of
the hydrophilic nature of PVP and PEO polymers, which were
exposed to environmental humidity during storage. It demon-
strates the ability of the presented technique to study the surface
diffusion of different materials.

It is interesting to note that AFM-MS is rather tolerable to hor-
izontal streak artifacts. These artifacts are clearly seen in channels
2–4 in Fig. 1a and the top probability images of Fig. 2 as horizon-
4
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tal lines. These artifacts are typically caused either by vibrational
noise or a small piece of dirt picked up by the AFM probe (which
is quickly self-cleaned). It is possible to eliminate these artifacts
or at least minimize them by multiple imaging of the same area.
However, it has not been done on purpose to demonstrate this
feature of AFM-MS, tolerance to these artifacts. After combining
multiple channels with a machine learning algorithm, the streak
artifacts either substantially vanish or completely disappear in
the classification image, as shown in Figs. 1 and 2 (RGB images).

The lateral spectroscopic resolution of the presented tech-
nique can theoretically be defined by the area of contact of one
single AFM touch. The area, in turn, is defined by the radius of
the AFM probe, load force (indentation depth), the adhesion
energy between the AFM probe and sample, and the speed of
indenting. Certainly, the two materials should be sufficiently dif-
ferent from the physical/mechanical points of view. The radius
of curvature of the AFM probe used in this work is of the order
2–3 nm, whereas the indentation depth of the polymers used
in this work is not more than 2–4 nm. Thus, the lateral resolution
of the described technique is expected to reach the level of single
nanometers.

Although the spectroscopic resolution of AFM-MS is theoreti-
cally defined as a single-pixel resolution, it can be quite mislead-
ing due to the variation of the measured properties across each
material. As demonstrated in SI Figure S3, there is an illusion that
a human eye can distinguish between PEO, PS, and PVP poly-
mers even in single channels. However, the histogram of the dis-
tribution of physical properties (SI Figure S4) reveals significant
overlap among the properties of the three polymers. Conse-
quently, relying on a single channel for spectroscopic separation
would result in incorrect identification in many pixels. To
achieve nearly unambiguous identification of the specific poly-
mer, a combination of multiple channels is necessary.

It is instructional to demonstrate the spectroscopic resolution
using mechanically distinctive materials. Fig. 3 demonstrates the
spectral resolution of �1.6 nm by distinguishing silica material
of a nanoparticle embedded in epoxy resin. This is in agreement
with the above theoretical estimations. Presumably, the value of
this resolution is limited by the radius of curvature of the AFM
probe.

It is useful to compare the described AFM-MS with another
technique, confocal Raman spectroscopy, which is broadly used
to identify the type of materials. Fig. 4a shows an example of a
0.1016/j.mattod.2024.08.021
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4 mm polystyrene bead partially embedded in epoxy resin. The
lateral resolution of Raman microscopy is limited by the diffrac-
tion limit of �200 nm. However, the actual lateral resolution can
be confusing because the Raman signal comes from a noticeable
thickness of the sample (Fig. 4 b). For example, AFM identifies
only 2 mm of the polystyrene bead exposed above the epoxy
(Fig. 4 d,f)). However, Raman microscopy detects the signal from
polystyrene of the full size of 4 mm (Fig. 4 e,f). This shows the
substantial difference between the Raman technique and the
described mechano-spectroscopy. The AFM-MS provides sub-
stantially higher both lateral and vertical resolutions over the
sample surface. At the first-order approximation, one can say
that the vertical resolution of AFM-MS can be approximated by
the depth of the sample deformation by the action of the AFM
probe, which is 2–4 nm in the considered examples. It comes
at the cost of not being able to detect materials hidden beneath
the surface. The vertical resolution of Raman microscopy is hard
to estimate because it is defined by many parameters, including
the type of material, numerical aperture of the objective, and
magnification. Realistically, it could be estimated as �0.5 mm.

The synergy between Raman confocal spectroscopy and the
described AFM-MS should be noted. Large parts of the sample
can be identified with Raman spectroscopy, as shown in Fig. 4.
It can directly be used to train the classification algorithms of
Method II. AFM-MS applied to such a sample will then reveal
the location of particular materials on the sample surface with
nanoscale accuracy.

It should be noted that the idea of combining multiple phys-
ical properties to resolve a very large number of materials comes
from “artificial nose”. It was demonstrated that by combining a
FIG. 2

Details of the work of machine learning classification algorithms. The trained ML
material. RGB combined images: The probabilities are encoded by RGB colors
sample. Two samples of 20x20 mm2 are shown. The top row: A freshly prepared
two weeks after the preparation; polymer diffusion makes the sample more ch
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limited number of sensors (“receptors”) specific to particular
molecules, one could obtain a combinatorial sensor that can dis-
tinguish a large number of different stimuli/smells [48–50].
Therefore, we expect the nano mechano-spectroscopy technique
to be able to distinguish a very large number of polymers, though
we demonstrated the approach using only three polymers. The
limits of the utility of the described AFM-MS are yet to be
determined.

Conclusions
This study introduces an innovative nano mechano-
spectroscopy technique (AFM-MS) that utilizes physical and
mechanical properties of materials to identify the materials. It
allows the locating of specific material components within a
composite sample up to a single nanometer spatial resolution.
In this respect, the new spectroscopy surpasses the capabilities
of existing techniques used for material identification. The
unprecedented resolution of this spectroscopy is expected to
have wide-ranging applications in material science and engineer-
ing, encompassing polymers, biomaterials, nanocomposites, and
other complex materials. Furthermore, the AFM-MS technique is
a relatively fast imaging technique, which allows obtaining the
spectroscopic images of a sample surface with the speed of a reg-
ular sub-resonance AFM tapping. Compared to other techniques,
AFM-MS is rather versatile; it can be used both in air and in a liq-
uid medium with a minimum nondestructive energy exchange
with the sample study. The unique information obtained
through this technique can be synergistically combined with
other characterization methods, such as confocal Raman micro-
scopy, to provide a more comprehensive analysis of materials.
algorithm calculates the probability of each pixel representing a particular
and combined to present the distribution of particular polymers over the
blend of three polymers (PS, PVP, PEO). The bottom row: The same sample
allenging for recognition.
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Experimental section
Materials
Polystyrene (PS, Mw �32,000), polyethylene oxide (PEO,
Mw �100,000 ), and polyvinyl pyrrolidone (PVP, Mw�40,000)
were purchased (all by SigmaAldrich, Hoeilaart, Belgium) and
used as is. The polymer blends were prepared as follows. All poly-
mer solutions were prepared in Chloroform (10 mg/mL). The
stock solution was then blended with 1:1:1 ratio. The samples
for the AFM-MS study were then prepared by drop casting
(500 mL/cm2) on a freshly cleaned Si wafer and then allowed to
dry for 24 h with a solvent annealing process (a small beaker of
Chloroform placed in the vicinity of the drying samples in a
closed chamber). It created films of �125mm in thickness. The
samples with embedded particles were prepared as follows [51].
Washed and dried 4 mm polystyrene beads (BaseLine Chromtech,
Tianjin, China) were spread over semi-rigidified epoxy (Loctite
EA E-30CL, Henkel Corporation, CT, USA). Silica nanoparticles
(Pureon Inc., NC, USA) were partially embedded in epoxy (Loc-
tite EA E-30CL, Henkel Corporation, CT, USA) as follows. The sil-
ica nanoparticles were freeze-dried to obtain a powder. A layer of
epoxy was applied to a glass slide, which was allowed to semi-
solidify. Once the epoxy reached a semi-solid state, the silica
nanoparticle powder was evenly spread over it. The sample was
then left to solidify thoroughly for 48 h.
Atomic force microscopy
Atomic force microscopes Icon and Bioscope Catalyst (Bruker
Nano, Inc., Santa Barbara, CA) working in PeakForce QNM mode
with Ringing mode extension (NanoScience Solutions, Inc.,
Woburn, MA) were used. ScanAsyst AFM probes for working in
air (by Bruker Nano, Inc., Santa Barbara, CA) were used. The
radius of the AFM probe was found by using TipCheck sample
(BudgetSensors, Sofia, Bulgaria). It was in the range between 3
to 4 nm. The spring constant of the cantilever was measured
using the thermal tuning method, and it was in the range
between 0.3 – 0.4 N/m. The scanning was done in air in humid-
FIG. 3

Experimental demonstration of the lateral spectral resolution of the described
shown. The probabilities of identification of material as epoxy (red) and silica (
cross-section of the probability of identifying material as silica is shown. The sp
The width of the probability change of 1.6 nm, which can be called the lateral
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ity between 30 to 40 %. The scanning speed was 0.1–0.3 Hz. The
PeakForce was chosen to be 1–2 nN. The speed and the ampli-
tude of PeakForce tapping were set to 1 kHz and 300 nm, respec-
tively. The following channels were recorded and used in the

described method: PeakForce QNM: Adhesion, Deformation, Dis-
sipation, Peak Force;

Ringing mode: Restored adhesion, RM Adhesion, RM Peak
Force, Viscoelastic adhesion, Neck height, Disconnection length,
Energy loss during disconnection, Dynamic phase shift.

Machine learning algorithms
First, let us describe the structure of the data obtained with AFM
on a sample. Each AFM scan M consists of K channels M(k):

M ¼ fMð1Þ; ::;MðKÞg;wherek ¼ 1::K: ð1Þ
Each kth channel is represented by an image which constists of

NxN pixels located at Cartesian coordinates (xi, yj). So,

MðkÞ ¼
[N
i¼1

[N
j¼1

fz kð Þ
i;j g ð2Þ

where zi,j(k) is the value of the kth channel at pixel (xi, yj), i,j, =1..
N. Since all channels are recorded at the same pixels, the coordi-
nates of the pixels do not carry the channel index.

So each AFM scan now can be written as

M ¼
[N
i¼1

[N
j¼1

fz 1ð Þ
i;j g

n
; :: ; fz Kð Þ

i;j g
o

ð3Þ

Different AFM scans will be presented using an index s, where
s = 1.. S, S is the number of different scans. Usually different scans
are collected on different areas of the sample. In this case, the
database recorded on the sample reads as

M ¼
[S
s¼1

[N
i¼1

[N
j¼1

fz 1;sð Þ
i;j g

n
; :: ; fz K;sð Þ

i;j g
o

ð4Þ

In some cases it is useful to consider only a small portion p of the
total image restricted by a specific choice of pixels fi; j; pg. For
nano-mechano-spectroscopy. (a) 3D height AFM image of 200x200 nm2 is
green) are superimposed on the height image using different colors. (b) A
ecific location of this cross-section is shown in panel (a) by a solid blue line.
spectral resolution [23], is shown.
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example, it can be a zoomed area specific to a particular material.
This portion of the database Mp reads as follows:

Mp ¼
[S
s¼1

[N
i¼1

[N
j¼1

fz 1;sð Þ
i;j;p g

n
; :: ; fz K;sð Þ

i;j;p g
o

ð5Þ

In the machine learning terminology, vector fz 1;sð Þ
i;j;p g

n
; :: ; fz K;sð Þ

i;j;p g
o

for specific i,j,s,p is a feature of the instance dataset. To train a clas-
sifier in supervised machine learning, each feature should be
assigned a particular class C(l), where l = 1..L; L is the number of
classes in consideration. So the database D used for building the
classifier has a class assignment for each feature on the database

D ¼
[S
s¼1

[N
i¼1

[N
j¼1

fz 1;sð Þ
i;j g

n
; :: ; fz K;sð Þ

i;j g; CðlÞ
i:j

o
ð6aÞ

or

Dp ¼
[S
s¼1

[N
i¼1

[N
j¼1

fz 1;sð Þ
i;j;p g

n
; :: ; fz K;sð Þ

i;j;p g; CðlÞ
i:j

o
ð6bÞ

dependent on the case of equations 4 or 5.
Method 1:
In this method, the classification algorithm is created on sam-

ples containing datasets of pure polymers. In the case of three
polymers (L=3) analyzed in this work, the total dataset is {DPS,
DPVP, DPEO}, where Dpolymer is the database for each particular class
(polymer) described by equation (6a). The number of images per
sample, S=1, was sufficient due to the homogeneity of the
samples.
FIG. 4

Comparison with confocal Raman microscopy/spectroscopy and mechano-spec
(a) A schematic of the sample. The AFM probe can easily image the outstandi
adhesion (not shown) allow easy identification of the bead above the epoxy. (b)
of the laser excitation light may result in a Raman signal coming from both polys
in epoxy (shown in panel d) superimposed with the map of the Raman signal (sh
bead as well as the location of the detectable Raman signal associated with po
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The whole dataset was split into training and validation sets.
The validation set was typically around 10–20 % of the entire
dataset. A classifier CL was trained on the training set and then
tested on the validation set to ensure that the classifier was not
overtrained and could distinguish each pure polymer well. The
trained this way classifier CL was then applied to every pixel (i,

j) of the polymer blend AFM image-dataset Mmix(given by equa-
tion (4). The obtained vector of probabilities was the result of
application of the classifier:

ProbaPS; ProbaPVP; ProbaPEO
n o

¼ CL½
[S
s¼1

[N
i¼1

[N
j¼1

fz 1;sð Þ
i;j g

n
; :: ; fz K;sð Þ

i;j g
o
�: ð7Þ

In the considered example, S=1, N=512 (or 256), K=12.
Method 2:
Here, to develop a classifier to be applied to the unknown

mixed sample, we used a zoomed area in which the known poly-
mers were located. In contrast with Method I, the used database
is now described by equation (6b), in which p ={PS, PVP, PEO}.
(An example of a particular location of those zoomed areas is
shown in Fig. 1.) Similarly, trained classifier CL is then applied
for the rest of the image(s) to obtain probabilities of each pixel
to belong to a particular class:

ProbaPS; ProbaPVP; ProbaPEO
n o

¼ CL½
[S
s¼1

[N
i¼1

[N
j¼1

fz 1;sð Þ
i;j;p�g

n
; :: ; fz K;sð Þ

i;j;p�g
o
�; ð8Þ
troscopy: an example of a polystyrene sphere partially embedded in epoxy.
ng part of the polystyrene bead. Substantial differences in roughness and
A diagram showing the work of Raman microscopy. The finite depth of focus
tyrene and epoxy. (c) A 3D AFM image of the polystyrene sphere embedded
own in panel e). (f) Shows the size of the outstanding part of the polystyrene
lystyrene.
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where p
�
is the indicator of the pixels complementary to all used

zoomed areas, i.e, all pixels of the image with the exception of
the zoomed areas used to build a classifier.

In the considered example, S=1, N=512 (or 256), K=12.
In both of these methods, the pixels of the analyzed sample

are assigned a vector of classification probabilities exampled by
equations (7) and (8). The dimension of this vector equals to
the number of components in the sample of study. In the exam-
ple considered here, we deal with three components/polymers.
Three dimensions (or less) can be conveniently represented by
the RGB color model, and the result of classification can be
immediately plotted using the so-called classification map,
which is used in the figures of this work.

The classifiers used in this work were either a shallow Neural
Network or Random Forest. A Python code of the used classifier
is shown in the Supplementary materials. Random forest as
implemented within Scikit-learn python package and the Neural
Networks were built using PyTorch package. A variety of shallow
Neural Network architectures were considered for classification.
The final architecture consisted of two fully connected hidden
layers with 7 and 5 neurons, respectively. The input number of
neurons depended on the number of AFM channels used for
classification.
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